Early alcohol exposure induces persistent alteration of cortical columnar organization and reduced orientation selectivity in the visual cortex.
نویسندگان
چکیده
Fetal alcohol syndrome (FAS) is a major cause of learning and sensory deficits in children. The visual system in particular is markedly affected, with an elevated prevalence of poor visual perceptual skills. Developmental problems involving the neocortex are likely to make a major contribution to some of these abnormalities. Neuronal selectivity to stimulus orientation, a functional property thought to be crucial for normal vision, may be especially vulnerable to alcohol exposure because it starts developing even before eye opening. To address this issue, we examined the effects of early alcohol exposure on development of cortical neuron orientation selectivity and organization of cortical orientation columns. Ferrets were exposed to ethanol starting at postnatal day (P) 10, when the functional properties and connectivity of neocortical neurons start to develop. Alcohol exposure ended at P30, just before eye opening at P32. Following a prolonged alcohol-free period (15-35 days), long-term effects of early alcohol exposure on cortical orientation selectivity were examined at P48-P65, when orientation selectivity in normal ferret cortex has reached a mature state. Optical imaging of intrinsic signals revealed decreased contrast of orientation maps in alcohol- but not saline-treated animals. Moreover, single-unit recordings revealed that early alcohol treatment weakened neuronal orientation selectivity while preserving robust visual responses. These findings indicate that alcohol exposure during a brief period of development disrupts cortical processing of sensory information at a later age and suggest a neurobiological substrate for some types of sensory deficits in FAS.
منابع مشابه
Functional characterization and spatial clustering of visual cortical neurons in the predatory grasshopper mouse Onychomys arenicola.
Mammalian neocortical circuits are functionally organized such that the selectivity of individual neurons systematically shifts across the cortical surface, forming a continuous map. Maps of the sensory space exist in cortex, such as retinotopic maps in the visual system or tonotopic maps in the auditory system, but other functional response properties also may be similarly organized. For examp...
متن کاملFunctional organization of envelope-responsive neurons in early visual cortex: organization of carrier tuning properties.
It is well established that visual cortex neurons having similar selectivity for orientation, direction of motion, ocular dominance, and other properties of first-order (luminance-defined) stimuli are clustered into a columnar organization. However, the cortical architecture of neuronal responses to second-order (contrast/texture-defined) stimuli is poorly understood. A useful second-order stim...
متن کاملOrientation selectivity without orientation maps in visual cortex of a highly visual mammal.
In mammalian neocortex, the orderly arrangement of columns of neurons is thought to be a fundamental organizing principle. In primary visual cortex (V1), neurons respond preferentially to bars of a particular orientation, and, in many mammals, these orientation-selective cells are arranged in a semiregular, smoothly varying map across the cortical surface. Curiously, orientation maps have not b...
متن کاملThe effects of acute alcohol exposure on the response properties of neurons in visual cortex area 17 of cats.
Physiological and behavioral studies have demonstrated that a number of visual functions such as visual acuity, contrast sensitivity, and motion perception can be impaired by acute alcohol exposure. The orientation- and direction-selective responses of cells in primary visual cortex are thought to participate in the perception of form and motion. To investigate how orientation selectivity and d...
متن کاملClustering of response selectivity in the medial superior temporal area of extrastriate cortex in the macaque monkey.
Ever since being described by Mountcastle (Mountcastle, 1957), columnar organization of sensory cortical areas has provided key leverage into understanding the functional organization of neocortex. Columnar or clustered organization of neurons sharing like properties is now known to be widespread, and probably universal in primary sensory areas. Visual cortex in primates consists of a primary a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 93 3 شماره
صفحات -
تاریخ انتشار 2005